6/H-73 (viii) (a) (Syllabus-2015)

> 2018 (April)

COMPUTER SCIENCE

(Honours)
(Compiler Design)
(CS-602 AT)
Marks : 75
Time: 3 hours
The figures in the margin indicate full marks for the questions
Answer one question from each Unit

Unit-I

1. (a) What is a compiler? How is it different from an interpreter?
(b) What is the use of regular expressions? Provide the rules that define regular $2+7=9$ expressions.
2. (a) Name the various phases of a compiler. Briefly explain the first two phases. $4+6=10$
(b) What do you understand by finite automata? Differentiate between nondeterministic finite automat (NFA) and deterministic finite automat (DFA).
UnIT -II
3. (a) Differentiate between left derivation and right derivation.
(b) What is an ambiguous grammar?
(c) What is left recursion? How can it be $4+4$
4. Define a handle. Explain the concept of shift reduce parsing.

Unit-III

5. (a) Differentiate between static checking and dynamic checking. What are the advantages of static checking and dynamic checking $\quad 2+2+2$
(b) What is the associated information stored in a symbol table for an identifier? How is this information u used during error this information $5+4$ during error detection?

(3)

6. (a) What do you understand by type conversion?
(b) Describe any two data structures that can be used to represent a symbol table. 10
UnIT-IV
7. (a) What is a runtime environment? Give four advantages of an intermediate code over direct code generation.
(b) Briefly explain the contents stored in an 7 activation record.
8. (a) Describe in brief Abstract Syntax Trees and Directed Acyclic Graphs.
(b) How is a quadruple used to implement three-address instructions? Give an $\quad 6+3=9$ example.
UNIT-V
9. (a) Name and describe three factors that can affect code generation.
(b) Explain the following code optimization $3+3+3=9$ techniques:
(i) Compile-time evaluation
(ii) Common sub-expression elimina-
(iii) Strength reduction (Turn Over)

(4)

10. (a) What is a 'basic block'? How are they
constructed?
(b) Describe how a Directed Acyclic Graph (DAG) can be used to represent basic
blocks.

$$
\star \star \star
$$

